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Abstract

This paper is concerned with the force-induced vibrations of linear elastic solids and structures. We seek a transient

distribution of actuating stresses produced by additional eigenstrain, such that the vibrations produced by a given set of

imposed forces are exactly compensated. This problem, known as dynamic shape control problem in structural engi-

neering, or as dynamic displacement compensation problem in automatic control, is inverse to the usual direct problem

of determining displacements due to imposed forces and actuation stresses. In the present paper, we extend a method,

which was introduced by F.E. Neumann for demonstrating the uniqueness of direct elastodynamic problems. We use

this extended Neumann method in order to show that the distribution of the actuating stresses for shape control must

be equal to any statically admissible stress distribution that is in temporal equilibrium with the imposed forces. We

furthermore discuss the role of stresses corresponding to this class of solutions in some detail, emphasizing the non-

unique nature of a statically admissible stress. As an analytical justification of our formulations, we show that our

method reveals some static results by J.M.C. Duhamel and by W. Voigt and D.E. Carlson. Particularly, our method can

be interpreted as a dynamic extension of the Duhamel body-force analogy. We moreover present numerical results for a

dynamically loaded, irregularly shaped domain in a state of plane strain. These finite element computations give ex-

cellent evidence for the validity of the presented method of shape control for both, the case of a step-input and the case

of a harmonic excitation.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a solid structure that is fixed at some part of its boundary, and that is initially at rest in an

undeformed state. The constitutive behavior of this body is assumed to be elastic and anisotropic. The body
now is loaded by transient imposed forces, which are considered as known throughout the paper. Due to

the imposed forces, vibrations of the body are induced. These force-induced vibrations may considerably
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lower the structural usability, particularly, when the body is driven into resonant vibrations. We therefore

wish to superpose a transient distribution of actuation stresses, such that the force-induced vibrations are

cancelled out exactly. In the following, we describe the vibrations of the body in the framework of the linear

theory of elastodynamics, and we assume that the actuation stresses are produced by eigenstrains.
We present the following short review on eigenstrains. The name ‘‘eigenstrain’’ has been introduced by

Mura (1991) in order to denote incompatible strains such as thermal expansion strains or plastic misfit

strains. This name stems from the German word ‘‘Eigenspannungsquelle’’ (see Reißner, 1931). Contrary to

imposed forces, eigenstrains under certain instances may be associated with deformation-free stresses, or

with stress-free deformations. Thermoelasticity probably represents the most prominent example of

eigenstrain type problems, see e.g. Parkus (1976) and Nowacki (1975) for some comprehensive expositions

including dynamic formulations. There exists a well-known analogy between the actuating effect of thermal

expansion in a thermoelastic body and the converse piezoelectric effect in a piezoelastic body, such that
computational methods of thermoelasticity may be used to solve problems of piezoelectrically actuated

bodies (see Vinson (1993)). Both, temperature and electric field are coupled to structural deformations, the

latter effect being denoted as the direct piezoelectric effect and being utilized in practice for the sake of

sensing. In the last decades, piezoelectricity has been extensively applied for actuation and sensing of

structural vibrations (see Saravanos and Heyliger, 1999 and Rao and Sunar, 1999 for reviews). Frequently,

the piezoelectric effects are realized in practice by means of piezoelastic stackers, patches or layers, which

are bonded or otherwise integrated into the bodies to be actuated or sensed. It has become customary to

summarize structures with integrated actuators and sensors, which are often connected by an automatic
control system, under the notions of smart or intelligent materials and structronic systems (see Tzou, 1998

and Flatau and Chong, 2002 for reviews). Some of the various physical effects utilized in modern smart

materials can be classified as eigenstrains. This is also true for the case of actuation by pre-stress, e.g. by

active tendons.

As has been already mentioned, it is the scope of the present paper to cancel out exactly force-induced

vibrations by means of actuation stresses produced by eigenstrains. In other words, our goal is to derive a

transient distribution of eigenstrain-type actuating stresses, such that the vibrations produced by a known

set of imposed forces are exactly compensated. Such a problem is inverse to the usual direct problem of
determining the displacements due to given imposed forces and actuation stresses. In structural engineering,

this inverse problem is known as a dynamic shape control problem, a term not to be confused with

automatic control. An automatic or feedback control algorithm is needed when the time evolution of the

imposed forces is not known in advance, when the vibrations would not start from an undeformed state of

rest, or when there are other uncertainties. In the automatic control community, our topic would be

denoted as compensation of the displacements induced by a known set of imposed forces.

In structural engineering, the field of shape control by eigenstrains started with a study by Haftka and

Adelman (1985), who developed a procedure for determining the temperature in control elements so as to
minimize the overall static distortion of a large space structure from its original shape. It has been noted by

Haftka and Adelman (1985) that the disturbances, which affect the shape of structures, may be subdivided

into two parts. One type is transient, while the second type of disturbances is due to fixed deformations or

those, which are slowly varying in time. The present paper deals with transient type of disturbances,

particularly with vibrations induced by imposed forces. A review on static and dynamic shape control by

piezoelectric actuation has been presented by Irschik (2002), where eigenstrain type actuations other than

the converse piezoelectric effect have been shortly addressed as well.

In the following, we treat the above stated shape control problem of compensating force-induced vi-
brations in the framework of the linear theory elastodynamics with eigenstrains (see e.g. Gurtin, 1972 and

Carlson, 1972 for fundamental expositions). See also Irschik et al. (1993) for integral statements connecting

force-induced and eigenstrain-induced vibrations. We assume that the eigenstrains or, equivalently, the

actuation stresses produced by eigenstrains, can be applied everywhere within the body and throughout the
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whole time-period under consideration. Under these assumptions, a class of solutions of the shape control

problem has been given by the present authors (2001), where use has been made of convolution-type in-

tegral theorems of elastodynamics, such as an extension of Graffi�s theorem, see also our exposition (2003).

The formulations given in Irschik and Pichler (2001, in press), extend a static solution presented by Irschik
and Ziegler (2001). The work of our group on shape control of beam vibrations using integral statements

has been recently extended by Irschik et al. (2003) to the case of electromechanically coupled beam

vibrations. For preceding contributions of our group including cooperation to automatic control (see

Irschik, 2002). For a use of the proposed shape control solution of force-induced beam vibrations in

automatic control (see Schlacher and Kugi, 1999 and Kugi, 2001). Recently, shape control of plate

vibrations has been treated by means of integral formulations by Nader et al. (2003).

The goal of the present contribution is, first, to present an alternative proof of results, which have been

derived by Irschik and Pichler (2001) by means of integral theorems. In the present contribution, we extend
a method originally used by Franz E. Neumann in order to prove the uniqueness of the solutions of direct

problems of linear elastodynamics, i.e. of the problem of determining displacements and stresses in an

elastic body due to given forces and, possibly, given actuation stresses. For a contemporary presentation of

Neumann�s method (see Chandrasekharaiah and Debnath, 1994). Our present problem of determining the

actuation stresses such that force-induced vibrations are compensated is inverse to the cited direct problem,

and a unique solution for shape control is therefore not to be expected in general. Extending Neumann�s
method, we are however able to show that, in order that our goal of shape control is achieved, the dis-

tribution of the actuating stresses must be equal to any statically admissible stress distribution that is in
temporal equilibrium with the imposed forces. Our solution thus is not only easy to obtain, but it also

explicitly reflects the non-uniqueness of the inverse problem under consideration. Our present derivations in

principle lead to the same results as in Irschik and Pichler (2001). However, the extension of Neumann�s
method to the present context of shape control is felt to be more straightforward and to be a result of its

own right. We moreover lay emphasis upon the role of stresses corresponding to the derived class of so-

lutions of shape control, and we discuss, how the non-uniqueness of the proposed solutions may be used in

order to decrease the amount of necessary actuation and thus the stresses. As an analytical justification of

our formulations, we show that our method reveals some static results by J.M.C. Duhamel and by W. Voigt
and D.E. Carlson. We finally present numerical results for a harmonically excited irregularly shaped plate.

These results, produced by the finite element code Abaqus, give excellent evidence for the validity of the

presented method of shape control in a wide frequency range.
2. Elastodynamic initial boundary value problem with actuation stresses

Consider a solid body B under the action of imposed body forces b per unit volume. The part oB1 of the

boundary of B is assumed to be fixed in space, such that a rigid body motion of B is prohibited. The re-

maining part of the boundary, oB2, is loaded by imposed surface tractions s per unit area. Both, the body
forces and the surface tractions are assumed to be known. They may vary with time, such that the particles

of B in general will be accelerated, and time-dependent displacements and deformations will take place. In

order to describe this transient deformation, we use an undeformed reference configuration, the placement
of which is defined by the fixed part oB1 of the boundary. We utilize the material description of continuum

mechanics, in which all of the mechanical quantities are described as a function of the position vectors p of

the particles in this reference configuration and of time t. For the sake of simplicity, we use a common

Cartesian co-ordinate system with unit vectors ei, i ¼ 1, 2, 3 when referring to the component form of

vectors and tensors. In this common co-ordinate system, using Einstein�s convention of summation about

repeated indices, the position vector is written as p ¼ xiei.
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The displacement vector of a particle, connecting its place in the reference configuration with its actual

place, is described as
u ¼ uðp; tÞ ¼ uiðp; tÞei: ð1Þ
The gradient of u with respect to the place p in the reference configuration is a tensor of second order,

which reads in the common co-ordinate system
gradu ¼ oui
oxj

ei � ej: ð2Þ
The symbol � denotes the tensorial product of two vectors. The divergence of u is
divu ¼ tr gradu ¼ oui
oxi

: ð3Þ
The trace of a second order tensor is denoted by tr.

Throughout the paper we assume that the displacement u and the tensor gradu are small in the sense of

the infinitesimal theory of continuum mechanics. Thus, we do not need to distinguish between the various

measures of stress and strain defined with respect to the reference and the actual configuration. We fur-

thermore assume linear relations between stress and strain to hold. Our formulations thus remain within

the linear theory of elasticity. For foundations, we refer to Gurtin (1972), Carlson (1972) and Chandra-

sekharaiah and Debnath (1994).
The goal of the present contribution is to derive a distribution of actuation stresses produced by eigen-

strains, which, when superposed upon the imposed body forces and surface tractions, results in zero total

displacements u throughout the body and at every time instant t. We note that the actuation stresses might

be coupled to the structural deformation, e.g. by the direct piezoelectric effect, or by the rate of strain term

in the heat conduction equation. This question however does not come into the play here, since we only ask

for the necessary distribution of actuation stresses. We return to this point below, at the end of Section 6.

We furthermore assume that the actuation stresses can be applied in a distributed manner everywhere

within the body and throughout the whole time-period under consideration. In practice, spatially dis-
cretized actuators, e.g. discrete patches, have to be often used. There is an ongoing research of our group

showing that a suitable placement of such discrete actuators can be found from the results derived for shape

control assuming spatially distributed actuation. Moreover, spatially distributed, shaped actuators more

and more are brought into practical applications (see the review given in Irschik, 2002).

As a first step, we state the initial boundary-value problem in the framework of which the goal of

compensating force induced displacements is to be achieved. We start with Cauchy�s first law of motion,

which we write as
B : q€uu ¼ bþ divST: ð4Þ

The density of mass is denoted by q, and a superimposed dot stands for the material time derivative,
_uu ¼ ouðp; tÞ=ot. Furthermore, S ¼ Sijei � ej is the stress tensor, and the superscript T denotes the transpose

of a tensor. We assume imposed couples as well as couple stresses to be absent, such that the stress tensor

becomes symmetric: ST ¼ S. In Eq. (4), the divergence term then can be written as
divST ¼ divS ¼ oSij
oxj

ei: ð5Þ
The stress is taken to be related to the strain by a generalization of Hooke�s law in the form
B : S ¼ C½E� þ Sa; ð6Þ
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where the strain E in the infinitesimal theory is related to gradu of Eq. (2) by
B : E ¼ sym gradu; ð7Þ

the symmetric part of a tensor being abbreviated by sym. The fourth-order tensor of elastic moduli is

denoted by C, and C½E� stands for the second-order tensor that represents the linear mapping of E by means

of C:
C½E� ¼ CijklEklei � ej: ð8Þ

In the case of an isotropic material Eq. (8) is given by
C½E� ¼ 2lE þ kI trE; ð9Þ

where I ¼ ei � ei is the identity tensor, and l and k are the two Lam�ee moduli. Furthermore, the tensor of

second order Sa ¼ SaT in Eq. (6) denotes an actuation stress, being the result of eigenstrain acting at the

particle under consideration, e.g., in case of a thermal loading of a thermoelastic body with isotropic linear

thermal expansion, there is
B : Sa ¼ C½a�h; ð10Þ

where h is the increase in temperature, and a denotes the second-order tensor of coefficients of linear

thermal expansion. In the isotropic case, there is C½a� ¼ �ð3kþ 2lÞâaI ; the thermal eigenstrain âah is also

denoted as thermal expansion strain in the literature.

In the sequel of our derivations, we consider anisotropic material behavior. The following relation of

symmetry nevertheless must hold for C:
C½E� � E ¼ C½E� � E; ð11Þ

where E ¼ E

T
denotes a symmetric tensor of second order, and the dot product indicates the double

contraction of two second-order tensors to a scalar quantity. As an example for the dot product of two

tensors of second order, consider the stress power given by
S � _EE ¼ tr ðST _EEÞ ¼ Sij _EEij: ð12Þ

The set of field equations governing our problem is formed by Eqs. (4), (6) and (7), where we assume a

sufficient continuity of the fields under consideration to be guaranteed. Additionally, at the part oB1 of the

boundary of B, we have the boundary condition of place:
oB1 : u ¼ 0; ð13Þ

while at oB2 there is the boundary condition of traction
oB2 : STn ¼ Sn ¼ s: ð14Þ

The vector Sn represents the linear transformation of the vector n by means of the second-order tensor S:
Sn ¼ Sijnjei: ð15Þ

The boundary condition stated in Eq. (14) follows from Cauchy�s fundamental theorem on stresses,

when written for a particle at the boundary oB2 with the outward unit normal vector n.
Since we assume that the vibrations start from an undeformed state of rest, we furthermore consider ho-

mogeneous initial conditions, such that the initial displacements and velocities vanish everywhere in B,
t ¼ 0 : u ¼ 0; _uu ¼ 0: ð16Þ

Using Eq. (7), it is seen that this latter relation is associated with vanishing initial values of strain and

rate of strain,
t ¼ 0 : E ¼ 0; _EE ¼ 0: ð17Þ
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In 1885, Franz E. Neumann proved the uniqueness of the above elastodynamic problem for the case of

an isotropic material with Sa ¼ 0. He first assumed two solutions to be produced by the same set of body

forces and surface tractions. The difference of these two solutions then must be represented by an elasto-

dynamic problem with zero body forces and surface tractions. In extension of a previous static consider-
ation by Kirchhoff, Neumann showed that the latter problem can have only a trivial (vanishing) solution.

For a contemporary presentation of Neumann�s proof, see Chandrasekharaiah and Debnath (1994). In the

next section, we assume b and s to be known in advance, and we use the technique developed by Neumann

in order to derive additional distributions of Sa such that there result zero total displacements u throughout

the body and at every time instant. As was mentioned in Section 1, this shape control problem in general

does not have a unique solution.
3. Exact compensation of force-induced displacements by actuation stresses

Motivated by the cited derivation of Neumann, we define the following function of time
NðtÞ ¼
Z
B
ðC½E� � E þ q _uu � _uuÞdV ð18Þ
by integration over the body B. The scalar vector product
_uu � _uu ¼
X3

i¼1

_uu2i ð19Þ
gives the square of the velocity vector of a particle.

Differentiating Eq. (18) with respect to time yields
_NN ¼ 2

Z
B
ðC½E� � _EE þ q _uu � €uuÞdV ; ð20Þ
which follows from the symmetry condition for the tensor of elastic moduli (Eq. (11)). From the generalized

Hooke�s law (Eq. (6)) from the kinematic relation given in Eq. (7), and since S and Sa are symmetric, we

obtain that
C½E� � _EE ¼ ðS � SaÞ � _EE ¼ ðS � SaÞ � sym grad _uu ¼ ðS � SaÞ � grad _uu: ð21Þ

The following tensorial identity holds:
ðS � SaÞ � grad _uu ¼ �divðS � SaÞ � _uuþ divððS � SaÞ _uuÞ: ð22Þ

Inserting Eqs. (22) and (21) into Eq. (20) and using the divergence theorem, it is found that
_NN ¼ �2

Z
B
divðS � SaÞ � _uudV þ 2

Z
oB
ðs� SanÞ � _uudS þ 2

Z
B
q _uu � €uudV : ð23Þ
The following identity is easily verified:
ðS � SaÞ _uu � n ¼ ðS � SaÞn � _uu: ð24Þ

Hence, due to Cauchy�s fundamental theorem on stresses (Eq. (14)) and from Cauchy�s first law of

motion (Eq. (4)) we can write Eq. (20) as
_NN ¼ 2

Z
B
ðbþ divSaÞ � _uudV þ 2

Z
oB
ðs� SanÞ � _uudS: ð25Þ
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In order to proceed further with Eq. (25), we define a statically admissible stress field bSS , which satisfies

the static field equation
B : div bSS ¼ �b; ð26Þ

as well as the following boundary condition at oB2:
oB2 : bSSn ¼ s: ð27Þ

Note that Eq. (26) represents the quasi-static version of Cauchy�s first law (Eq. (4)) i.e. it is an equi-

librium condition. Note, furthermore, that Eq. (27) coincides with the boundary condition of traction (Eq.
(14)). The quasi-static boundary value problem indicated in Eqs. (26) thus may have an infinite number of

solutions, since we do not specify a constitutive relation, nor do we specify a boundary condition at oB1.

Now suppose that Sa coincides with a statically admissible stress field satisfying Eqs. (26) and (27),
Sa ¼ bSS ; ð28Þ

throughout B and at every time instant under consideration. Then, inserting Eqs. (26) and (27) into Eq.

(25), it is found that
_NN ¼ 0; ð29Þ

such that the N must be constant, NðtÞ ¼ const. Hence, inserting the initial conditions given in Eqs. (16)
and (17) into Eq. (18), it is found that N must vanish during the whole course of the motion:
NðtÞ ¼ 0: ð30Þ

We now assume, as it is customary in the linear theory of elasticity, that for a non-vanishing strain,

E 6¼ 0, there is
C½E� � E > 0: ð31Þ

The tensor of elastic moduli thus is assumed to be strongly elliptic. Moreover, the mass density is

positive, q > 0. It is thus seen that, in order to satisfy Eq. (30), the integrand in Eq. (18) must be zero.

Consequently, the strain E and the velocity _uu must vanish throughout B and at every time instant in order

that Eq. (30) can be satisfied. We have thus arrived at the following theorem:

Assume that the tensor of elastic constants is strongly elliptic (Eq. (31)) and that the initial conditions are

homogeneous (Eq. (16)). Then, given an actuation stress satisfying Eq. (28), the force-induced dynamic

displacements will be compensated, such that
B : uðp; tÞ ¼ 0: ð32Þ

Note that bSS in Eq. (28) follows from the solution of a quasi-static boundary value problem, which is

much simpler to handle than the original initial-boundary-value problem stated in Section 2, and which

reveals the non-uniqueness of the shape control problem under consideration. This non-uniqueness by no

means represents a drawback in the present context. Contrary, this fact may be used to decrease the

necessary effort for actuation, as is shortly shown below.
4. Stresses associated with an exact compensation of force-induced displacements

Compensation of force-induced vibrations of course does not mean to compensate the corresponding

force-induced stresses. However, the total stresses due to the application of both, forces and eigenstrain,
show an interesting behavior, and they may be influenced in a beneficial manner due to the non-uniqueness

of the underlying solution of shape control presented above. First, note that every divergence-free stress
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field with zero surface tractions on oB2 may be superimposed upon Eq. (28) without leading to non-zero

displacements. Indeed, any stress distribution
Sa
þ ¼ bSS þ bSS0; ð33Þ
where bSS is a solution of Eqs. (26) and (27), and bSS0 satisfies the homogeneous set of equations
B : div bSS0 ¼ 0; ð34Þ

oB2 : bSS0n ¼ 0; ð35Þ

does represent another solution of our shape-control problem. But since the total displacements now vanish

(Eq. (32)) this is also true for the strains (Eq. (7))
Eðp; tÞ ¼ 0: ð36Þ

Inserting Eqs. (33) and (36) into the constitutive equations (Eq. (6)) the following result thus is obtained

for the stresses:
S ¼ Sa
þ ¼ bSS þ bSS0: ð37Þ
Hence, and this is an interesting result we would like to emphasize, it is found that the stresses corre-

sponding to the above solution of dynamic shape control are equal to the actuation stresses, which in turn

are formed by the stresses corresponding to quasi-static problems. That is, to minimize the actuation

stresses means to minimize the total stresses. It is important to note that, since the quasi-static problems
stated in Eqs. (26) and (27) and Eqs. (34) and (35), respectively, are not complete, the stresses can be in-

fluenced accordingly, with the rare exception of statically determinate problems. In the latter, bSS follows

uniquely from Eqs. (26) and (27), such that there is bSS0 ¼ 0 in Eqs. (34) and (35). This case e.g. occurs when

transferring the above solution of shape control from the three-dimensional theory to a statically deter-

minated beam or truss by analogy. In general, however, a rational regularization strategy for obtaining a

stress distribution bSS satisfying Eqs. (26) and (27) is to add proper constitutive relations and boundary

conditions of place on oB1, and to compute the corresponding quasi-static stresses afterwards. These

constitutive relations and boundary conditions of course need not to coincide with the original ones, see
Eqs. (6) and (13), respectively. The same strategy can be followed for the divergence-less stress bSS0 in Eqs.

(34) and (35). Of course, the constitutive relations and boundary conditions for bSS and bSS0 need not to be the

same. Moreover, the constitutive relations need not even to be elastic, and the boundary conditions of place

need not to be homogeneous. This offers a wide range of tailoring bSS and bSS0 so as to minimize the stress S,
and thus the actuation stress Sa

þ, in Eq. (37). Such a strategy is planned to be studied in some detail in a

future investigation. Note furthermore that the part of actuation formed by Sa
þ � Sa ¼ bSS0 obviously does

not produce any strain, since it can be added to Sa in Eqs. (28) without violating the goal of shape control

(see Eq. (37)). Such a solution has been termed a nil-potent solution in a previous static study by Irschik
and Ziegler (2001).

In passing to the following numerical example, we now assume that bSS and bSS0 belong to two quasi-static

boundary value problems that obey the original homogeneous boundary condition of place (see Eq. (13)).

Furthermore, the corresponding constitutive relations are chosen to have the original linear form with the

original tensor of elastic parameters C (compare Eq. (6)). We then assume that bSS belongs to a problem

without actuation stresses,
B : bSS ¼ C½bEE�; ð38Þ

while bSS0 is due to some actuation stresses Sa

0 ,
B : bSS0 ¼ C½bEE0� þ Sa
0 ; ð39Þ
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with the corresponding quasi-static strains bEE and bEE0, respectively. When setting Sa
0 ¼ 0, there followsbSS0 ¼ 0, since bSS0 is divergence-free (Eq. (34)) and there are no other sources of strain, such that one obtainsbEE0 ¼ 0 in Eq. (39). Having computed bSS , we insert it into Eqs. (28) or (37), in order to form the actuation

stress Sa. This choice has been used in the subsequent numerical example.
5. Some analytical verification

Before turning to numerical computations, however, we give some comparisons to the literature for the

sake of an analytical verification of the above formulations. We start with two interesting cases stemming

from the previous study on static shape-control by Irschik and Ziegler (2001). First, note that bSS0 ¼ 0 in Eq.

(39) also follows from the non-trivial choice Sa
0 ¼ bSS , since then, as the result of applying the above dynamic

considerations in the static limit, and as has been shown before by Irschik and Ziegler (2001), there isbEE0 ¼ �bEE, such that, C½bEE0� ¼ �bSS (see Eqs. (38) and (39)). Such a solution that produces zero static stresses

is called an impotent eigenstrain field in the literature (see Mura, 1991). On the other hand side, consider

any eigenstrain loading S
a
0 with a non-vanishing quasi-static stress bSS 0, and then take Sa

0 ¼
bSS 0 in Eq. (39). It

can be shown that the static strains then vanish in Eq. (39), bEE0 ¼ 0 and bSS0 ¼ bSS 0 (see Irschik and Ziegler,

2001). Such a solution, which produces zero static strains, is called a nil-potent solution, see also the remark

given above, and it can be used to influence the total stresses due to both, forces and eigenstrain actuation.

For the sake of a further analytical justification, we consider the case of an eigenstrain stemming from a

temperature rise h. The actuation stress Sa then is given by Eq. (10). When Sa is equal to a quasi-static stressbSS that is in temporal equilibrium with a set of body forces b and surface traction s (Eqs. (26) and (27)) the
displacements produced by b and surface traction s should be completely compensated by h (see Eq. (28)).

Conversely now, assuming h to be given, the set of body forces
b ¼ �divSa ¼ �divðC½a�hÞ ð40Þ

and surface traction
s ¼ San ¼ C½a�nh ð41Þ

should compensate the displacements due to h. But, due to the linearity of the theory under consideration,

the negative of the body forces and surface traction given in Eqs. (40) and (41) then should produce dis-

placements that are equal to the displacements produced by the temperature rise h. In the static case, this

result indeed is known as the body-force analogy of linear thermoelasticity, which dates back to J.C.M.

Duhamel (see Section 11 of Carlson, 1972). Hence, it is seen that our formulation is in agreement with the

static Duhamel body-force analogy. The derivations given in the present paper furthermore indicate that

the Duhamel body-force analogy may be utilized also in the dynamic case. This will be elaborated in more
detail elsewhere.

As a further analytical justification, we consider the case of a homogeneous body that is fixed everywhere

at the boundary (see Eq. (13)) such that boundary conditions of traction are absent (see Eq. (14)). The body

is assumed to be loaded by a constant static body force b. We again consider the case of an eigenstrain

stemming from a temperature rise h, the actuation stress Sa being given by Eq. (10). When this Sa is equal to

a quasi-static stress bSS that is in equilibrium with b (Eq. (26)) the displacements produced by b should be

completely compensated by h (see Eq. (28). This leads to the requirement
divSa ¼ divðC½a�hÞ ¼ div bSS ¼ �b ¼ const: ð42Þ

Since the body is homogeneous, C½a� is constant. This implies
C½a�gradh ¼ �b ¼ const: ð43Þ
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Taking C½a� to be invertible, Eq. (43) can be integrated so as to obtain
h ¼ �ððC½a�Þ�1bÞ � p þ h0; ð44Þ
where p is the position vector introduced in Section 2, and h0 denotes an arbitrary temperature distribution.

Indeed, this result dates back to W. Voigt and has been substantiated in Section 15 of Carlson (1972).

Hence, our method is in coincidence with the static Voigt–Carlson result about a temperature field that
induces a displacement-free state.
6. Numerical example

For a validation of the dynamic solution strategy for shape control discussed in Sections 3 and 4, the
following example problem is considered. A polygonal domain (see Fig. 1) is in a state of plane strain, the

non-dimensionalized co-ordinates of its corners are P1 : ð0:0=1:0Þ, P2 : ð0:0=0:0Þ, P3 : ð1:0=0:7Þ and

P4 : ð1:2=0:2Þ. The domain is fixed at the left boundary, x ¼ 0, the edges P2 � P4 and P3 � P4 are free of

stress. At the edge P1 � P3 the domain is loaded by a distributed surface traction in the form of a time

dependent pressure, s ¼ �p ¼ �p̂pqðtÞ, with the constant pressure p̂p and a given time-evolution qðtÞ.
In this example problem the required actuation for compensating the vibrations due to the external

surface traction is produced by means of a specific distribution of thermal expansion strain according to Eq.

(28). The coupling of thermal and mechanical fields is neglected. First, the quasi-static stress distribution
due to the surface traction is computed as
bSS ¼ bSSstatqðtÞ; ð45Þ
where bSSstat ¼ C½bEEstat� is the time-invariant static stress due to the constant surface pressure p̂p, the corre-

sponding static strain being bEEstat. The eigenstrain actuation then is computed in the form
Sa ¼ KĥhqðtÞ ¼ C½a�ĥhqðtÞ ð46Þ
with a constant reference temperature ĥh. The anisotropic tensor of stress-temperature coefficients K in

Eq. (46) is computed according to Eqs. (28) and (45) as
Fig. 1. Polygonal domain with a transient surface traction.
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K ¼ bSSstatĥh
�1: ð47Þ
Equivalently, the tensor of thermal expansion coefficients a in Eq. (46) is taken in the anisotropic form
a ¼ bEEstatĥh
�1: ð48Þ
The finite element validation was done using ABAQUS Standard 6.2 and a self-developed Visual C++

code for pre-processing. The polygonal domain was subdivided into 525 plane strain elements of type

CPE4R for the computations, the material properties of steel were assigned. In a first step the static stressbSSstat ¼ C½bEEstat� was computed. Using the C++ code, the proper thermal expansion tensors a were calculated

according to Eq. (48) and assigned to the corresponding finite elements. In the next step the finite element

code was used to perform dynamic computations with the latter anisotropic thermal expansion tensors.
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Two loading cases were considered. The case of vibrations due to the surface tractions is called the force

problem, and the case due to the negative actuation stresses given in Eqs. (46)–(48) was called the eigen-

strain problem. Since we use the negative actuation stress, displacements in the force and the eigenstrain

problem should be equal. Both, transfer functions in case of harmonic excitation, as well as step response
functions were computed for the force problem and the (thermal) eigenstrain problem. As a characteristic

result, the amplitude response spectra of the horizontal displacement u and the vertical displacement v of

point P4 in Fig. 1 are presented in Figs. 2 and 3, respectively. The displacements are scaled by means of the

quasi-static displacements, and the excitation frequency f is scaled by the fundamental eigenfrequency f1 of
the domain. The step response functions of the scaled horizontal and vertical displacement of point P4 in the

case of a suddenly applied load are presented in Figs. 4 and 5. The time in these figures is scaled by the

fundamental vibration period T1. Both the response spectra and the step responses of the force problem and
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the thermal eigenstrain problem do coincide with a high accuracy and in a wide frequency range and time

period, respectively, which gives excellent evidence for the validity of the presented class of solutions of the

dynamic shape control problem.
7. Conclusion

In the present paper, we have presented a solution strategy for finding a distribution of eigenstrain-

induced actuation stress such that the vibrations produced by given external forces do vanish. Extending a

method dating back to F. Neumann, we have shown that any statically admissible stress that is in temporal

equilibrium with the imposed forces, when it is applied as actuation stress in addition to the given forces,

induces zero displacements throughout the body. This practically appealing solution strategy, namely that

the engineer only has to solve a (quasi-) static problem in order to obtain an actuation stress for suppressing

force-induced vibrations, should assure the significance of technical content of the paper. Our result has
been confirmed by demonstrating a coincidence with analytical results from the literature, as well as by a

numerical study. Of course, there remains the question, how to realize such an eigenstrain-induced actu-

ation stress in practice. This seems to be a relatively easy task in the case of flexural vibrations of beams and

plates, where the statically admissible stress can be computed analytically and applied practically in the

form of shaped actuating layers, e.g. made of piezoelastic material. Our group has contributed rather in-

tensively to this field, both analytically and experimentally. In dynamic two- and three-dimensional

problems, however, numerical methods must be used (except in rare cases), and practical realizations re-

main an open area. The newly emerging fields of smart and functionally graded materials, which seek to
tailor the material according to a desired purpose, nevertheless give much hope for practical applications in

the very near future.
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